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A B S T R A C T

Artificial intelligence (AI) is increasingly impacting multiple domains. The application of AI in nutrition and 
ageing research has significant potential to transform healthcare outcomes for the ageing population. This review 
provides critical insights into how AI techniques—such as machine learning, natural language processing, and 
deep learning—are used in the context of care for older people to predict health outcomes, identify risk factors, 
and enhance dietary assessments. Trained on large datasets, AI models have demonstrated high accuracy in 
diagnosing malnutrition, predicting bone mineral density abnormalities, and forecasting risks of chronic dis
eases, thereby addressing significant gaps in early detection and intervention strategies.

In addition, we review novel applications of AI in automating dietary intake assessments through image 
recognition and analysing eating behaviours; these offer innovative tools for personalised nutrition interventions. 
The review also discusses and showcases the integration of AI in research logistics, such as AI-assisted literature 
screening and data synthesis, which can accelerate scientific discovery in this domain.

Despite these promising advancements, there are critical challenges hindering the widespread adoption of AI, 
including issues around data quality, ethical considerations, and the interpretability of AI models. By addressing 
these barriers, the review underscores the necessity for interdisciplinary collaboration to best harness AI's 
potential.

Our goal is for this review to serve as a guide for researchers and practitioners aiming to understand and 
leverage AI technologies in nutrition and healthy ageing. By bridging the gap between AI's promise and its 
practical applications, this review directs future innovations that could positively affect the health and well-being 
of the ageing population.

1. Introduction

The advancements in artificial intelligence (AI) in the last decade 
have delivered new potential solutions for problems across many do
mains, including healthcare and biomedical research. As life expectancy 
keeps on rising, while birthrates slowly decline [1], the proportion of 
older individuals is increasing. According to the World Health Organi
zation, by 2050, the world's population aged 60 years and older is ex
pected to account for 22 % (2 billion) of the total population, up from 12 
% (900 million) in 2015 [2]. This demographic shift underscores the 

importance of keeping older adults fit and productive for as long as 
possible, with diet playing a central role in promoting healthy ageing 
[3].

Research efforts are intensifying to uncover how lifestyle in
terventions, especially dietary modifications, can delay the ageing pro
cess and the onset of age-related diseases [4] such as cardiovascular 
disease, diabetes, and neurodegenerative disorders. However, 
improving targeted nutritional strategies depends highly on our under
standing of the mechanistical pathways underlying the hallmarks of 
ageing [5]. Additionally, high-throughput techniques are needed to 
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efficiently screen nutritional compounds for their role into ageing. Such 
identification studies are being carried out, but need to be upscaled to 
completely understand the vast array of potential compounds and their 
interactions [6].

Machine-learning approaches—including deep learning, natural- 
language processing, and large language models—are now being 
applied to large-scale data in nutrition and ageing research [7]. Machine 
learning algorithms, including supervised and unsupervised methods, 
are being trained on enormous amounts of nutritional and biomedical 
data to predict health outcomes, identify risk factors, and classify dietary 
patterns. Deep learning on unstructured data such as images is used for 
dietary intake assessment through image recognition of food items [8]. 
Large language models enhance natural language processing capabilities 
in screening and summarising scientific literature [9], enabling re
searchers to stay on top of the rapidly expanding body of knowledge.

Despite the potential, the application of AI in nutrition and ageing 
research is not without challenges. On one hand, promising AI appli
cations like AI-assisted abstract screening have yet to find their way into 
widespread use among researchers and practitioners. These tools can 
significantly reduce the time and effort required in systematic reviews 
and meta-analyses by automating the screening process of large 
numbers of abstracts and articles. On the other hand, there is a tendency 
for AI companies to overpromise and underdeliver, leading to over
reliance and misunderstandings. Issues such as data quality, lack of 
standardised methodologies, ethical concerns, and interpretability of AI 
models pose significant barriers to the adoption of AI in this field [10].

Therefore, it is necessary to critically assess where exactly the pos
sibilities lie for AI within nutrition and ageing research. This review 
provides an overview of the potential applications of AI in this field, 
examining both the opportunities and limitations. We emphasise that 
this work is a narrative review, designed to highlight specific applica
tions and challenges rather than provide exhaustive coverage of all 
research in the field. We aim to guide researchers in understanding and 
harnessing the potential of AI to advance nutrition and ageing research. 
By showcasing the practical implications of AI on research and practice 
in nutrition and healthy ageing, we help differentiate media hype from 
real impact.

2. Methods

For this review, we employed several AI tools in the process. The 
sequence in which these tools were used is depicted in Fig. 1. We wrote 
an outline for the subjects of the review. For every subject, a search 
string was constructed with help from ChatGPT o1-preview. This string 
was entered into SCOPUS, and the amount of hits were fed back into 

ChatGPT o1-preview until a reasonable amount of hits was found (be
tween 50 and 500 papers). The prompts leading to the final strings, and 
the number of total and relevant, are presented in Supplementary 
materials 1. These hits were exported in .ris format and imported into 
ASReview for title and abstract screening. The suggested ASReview 
protocol was followed [11]. Screening stopped when 10 papers in a row 
were irrelevant. The relevant papers were again exported as .ris, im
ported in EndNote, and supplemented with their full text PDFs. These 
PDFs were imported into NotebookLM, a language model that only uses 
information in presented PDFs, where summaries of the research papers 
were created, which were restructured to academic text using ChatGPT 
o1-preview and Claude Sonnet 3.5. The AI-generated summaries were 
manually reviewed and edited by the authors to ensure fidelity to the 
original sources and to prevent omission or misrepresentation of 
information.

3. Results

3.1. Body composition

AI can play a big role in predicting body composition from limited 
information. A chest radiographic prediction model showed to be able to 
predict actual height and weight and can be combined with information 
regarding clinical nutrition factors for rapid assessment of risk for 
malnutrition [12]. Recent advancements in machine learning have led 
to the development of effective predictive models for diagnosing 
malnutrition in elderly patients. In a highly accurate model, key pre
dictors like Activities of Daily Living (ADL), Albumin (ALB), Body Mass 
Index (BMI), and age were identified [13]. Another study developed the 
MUST-Plus tool, a machine-learning based screening tool, in a large 
urban health system, significantly improving the early diagnosis and 
documentation of malnutrition, with high acceptance among registered 
dietitians [14]. MUST-Plus is based on demographics, anthropometrics 
and laboratory data and demonstrated superior performance with 
significantly higher sensitivity and specificity compared to the classic 
MUST score [15]. A third study reanalysed data from a multicentre 
cohort, utilizing models such as light gradient boosting machine and 
random forest, and identified BMI, weight loss, and calf circumference 
as the strongest predictors of malnutrition according to the GLIM 
criteria, with the top models achieving diagnostic values that indicate 
clinical applicability.

Moreover, recent studies have demonstrated the efficacy of machine 
learning and deep learning models in predicting bone mineral density 
(BMD) abnormalities and diagnosing osteoporosis. By using neural 
networks and nomograms to analyse data from the National Health and 

Fig. 1. Visual representation of the workflow used in this mini-review. Graph constructed with Whimsical GPT plugin. The colours represent the main tool used in 
that step (ChatGPT+Scopus green, ASReview orange, EndNote purple, NotebookLM grey, Claude 3.5 + ChatGPT yellow). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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Nutrition Examination Survey (NHANES), surprising key risk factors 
such as caffeine intake, carbohydrate consumption, BMI, height, and 
various blood electrolytes were identified [16]. Their model demon
strated clinical utility in predicting BMD abnormalities, especially with 
dietary and electrolyte variations. Another study used deep learning 
models on opportunistic CT scans to classify osteoporosis and predict 
bone density, achieving high accuracy and strong correlations with 
quantitative CT results, indicating potential for reducing radiation 
exposure and expanding osteoporosis screening [17]. Machine learning 
algorithms, applied to NHANES data to identify individuals with low 
bone density using demographic and blood biochemical data, showed 
that a logistic regression model outperformed other models and effec
tively classified low BMD, supporting clinical decision-making for 
osteoporosis prevention and management [18].

For sarcopenia risk prediction, studies have demonstrated the 
effectiveness of machine learning models using non-invasive methods. 
In the Korea National Health and Nutrition Examination Survey, a sar
copenia prediction model using physical characteristics and activity- 
related variables was developed [19]. The study found that their algo
rithm achieved the highest accuracy, with BMI, weight, and waist 
circumference being the most important predictors, suggesting this 
model's utility in early detection of sarcopenia in resource-limited set
tings [19]. A different study explored an innovative approach using 
oculomics to predict sarcopenia. By analysing ophthalmological and 
demographic data with their model, the study achieved good diagnostic 
values, indicating that eye examinations can effectively predict sarco
penia risk, facilitating early intervention and personalised treatment 
plans [20].

3.2. Disease risk

Machine learning is more and more implemented in predicting dis
ease risks, for example for several cancers [21,22], age-related macular 
degeneration [23], atrial fibrillation [24], gout [25,26], delirium [27], 
hyponatremia [28], cognitive impairment [29], atherosclerosis [30] and 
diabetes [31]. Interestingly, these mainly machine-learning based pre
diction models found several nutritional targets, including dietary fibre 
for gout [25], dietary inflammatory index for cognitive impairment 
[29], and triglycerides for type 2 diabetes [31]. The field of AI disease 
prediction will advance further, leading to the identification and 
confirmation of several nutritional factors that could be targeted to 
improve healthy ageing.

Apart from disease outcomes, AI models are increasingly being used 
to predict functional declines such as kidney function, bone mass loss, 
muscle strength, and fall risks. Researchers have developed a machine 
learning model to predict “kidney age” using computed tomography 
(CT) scans and clinical data, identifying individuals at risk for kidney 
function decline, even when creatinine levels are normal [32]. Machine 
learning models also show promise for predicting osteoporotic fractures 
[26,33]. Studies have used algorithms like gradient boosting, random 
forest, decision tree, and logistic regression to predict fracture risk in 
women, achieving higher accuracy than traditional methods like the 
FRAX score [33]. In predicting muscle loss, AI models have demon
strated 80–90 % accuracy in identifying sarcopenia by using data on 
physical activity, obesity, socioeconomic status, and quality of life 
[34,35]. Additionally, a study used machine learning to predict fall risks 
in older adults by combining electronic health records with compre
hensive geriatric assessments, illustrating AI's potential in anticipating 
fall risks using diverse data sources [36]. Collectively, these advance
ments indicate that the growing role of AI in predicting disease risks and 
functional declines could significantly improve preventive healthcare 
and promote healthier ageing.

3.3. AI for dietary intake assessment

AI-based dietary assessment systems are being developed to improve 

the accuracy of food intake tracking for better management of nutrition 
and health, including applications in ageing populations [37–39]. These 
systems use deep learning models to analyse images and videos of meals, 
enabling the identification of food types, segmentation of food items, 
and estimation of food volume [38–40]. For instance, systems like 
goFOODTM can work with dual-camera smartphones or images from 
different angles to reconstruct the 3D food volume and estimate calorie 
and macronutrient content by referencing nutritional databases. The 
technology has shown promising results, with goFOODTM demon
strating superior performance compared to experienced dietitians in 
analysing normal central-European meals [39]. While challenges remain 
in accurately estimating portion sizes, particularly in real-world settings 
with diverse food types and preparations, researchers are exploring 
innovative solutions, such as leveraging depth information from 3D- 
cameras to enhance portion size estimation accuracy [41]. Currently, 
AI models are validated using suboptimal reference methods rather than 
gold standards. To improve accuracy and reliability, it is recommended 
to compare AI-based assessments with more rigorous techniques, such as 
the doubly-labelled water method. In addition to image-based nutrient 
detection, research has explored the potential of AI to automatically 
analyse eating behaviour in videos, going beyond the basic recognition 
of food types and quantities. This includes efforts to automatically detect 
and count individual bites, chews, and other eating gestures. For 
example, using deep-learning algorithms to analyse a set of face markers 
extracted from videos to identify and count bites [42,43]. These algo
rithms can track the movement of the mouth, such as the distance be
tween the upper and lower lips, to determine when a bite is taken. Other 
approaches involve models trained on inertial sensor data from wear
able devices to detect wrist micro-movements characteristic of eating 
behaviour [44,45]. Deep learning methods, which can detect more so
phisticated patterns in large datasets, may be better suited for tasks like 
chewing detection compared to conventional video-based tracking, as 
chewing often involves more subtle mouth movements compared to the 
distinct opening and closing of the mouth during biting [42].

In sum, recent developments in AI-based analysis of eating behaviour 
have the potential to significantly benefit dietary assessment and 
intervention strategies, but more robust comparisons against gold- 
standard methods are essential to ensure accuracy and reliability.

3.4. AI for research logistics

AI is already being regularly used in ageing research, mainly in AI 
driven drug discovery. AI-based drug discovery platforms can analyse 
large chemical libraries and prioritise molecules that are most likely to 
have anti-ageing properties [46]. This reduces the reliance on expensive 
and time-consuming high-throughput screening methods [46]. Where 
these techniques currently still mainly focus on pharmacological dis
coveries, they can be adapted to address nutrient and food compound 
discovery. Aside from discovering new compounds, AI is also used to 
better understand ageing processes and identifying intervention targets 
to mitigate the ageing process [47]. AI's ability to discover subtle pat
terns in enormous data will enable a step change in the discovery of food 
compounds that influence ageing.

Additionally, AI can be used to better summarize documented find
ings. For example, the program ASReview leverages machine learning to 
highlight relevant articles for researcher screening, potentially reducing 
the time and effort required for literature reviews [11,48]. Beyond 
identifying relevant publications, AI can also analyse large volumes of 
text to extract key knowledge and identify research gaps by analysing 
patterns and relationships [49], ultimately aiding in the synthesis of 
information for review papers [46,50]. However, it is important to 
remember that these tools still require researchers to provide accurate 
input during the initial “training” phase to ensure the AI model learns to 
identify relevant material effectively [48], and apply extreme caution 
with interpretations as correctness of AI output is never guaranteed.
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4. Discussion

The integration of artificial intelligence (AI) into nutrition and 
ageing research has opened new avenues for understanding and pro
moting healthy ageing. This mini-review highlights the multifaceted 
applications of AI, ranging from predicting body composition to 
enhancing dietary assessment and research logistics. While the potential 
is immense, it is crucial to critically evaluate these developments to 
ensure they translate into practical benefits for both researchers and the 
ageing population.

One of the most promising areas is the use of AI in predicting body 
composition and related health risks. Machine learning models have 
demonstrated high accuracy in diagnosing malnutrition, osteoporosis 
and sarcopenia among older patients. Interestingly, these models often 
relied on easily accessible data, such as BMI and waist-circumference 
[20], which is essential for practical implementation in settings where 
advanced resources are unavailable, and even open up avenues for 
implementation at home. In settings where CT scans are available, 
models can be run that already show to outperform conventional ap
proaches in sarcopenia diagnosis [51]. Earlier risk recognition of such 
ageing phenotypes is pivotal for proper intervention delivery to mitigate 
risks, for instance via nutrition and exercise regimens [52,53].

Beyond body composition, AI models are increasingly being used to 
predict risks of chronic diseases such as cancer, diabetes, and cardio
vascular conditions [21–31]. These models often identify nutritional 
factors as significant predictors, highlighting the intertwined relation
ship between diet and disease. For example, dietary fibre was found to 
be a key factor in predicting gout [25], and the dietary inflammatory 
index was significant in predicting cognitive impairment [29]. Such 
findings underscore the importance of nutrition in prevention and 
management of age-related diseases, and open the doors for targeted, or 
even personalised, lifestyle interventions.

AI's role in dietary assessment is another area of significant 
advancement. Image-based dietary assessment systems using deep 
learning can accurately identify food items and estimate portion sizes, 
improving the accuracy of dietary intake data [37–41]. While challenges 
remain in accurately estimating portion sizes in real-world settings, the 
continuous improvement of these technologies holds promise for both 
clinical and research applications. Moreover, the development of AI 
algorithms to analyse eating behaviour, such as bite and chew detection 
from videos, offers novel methods to study eating patterns and their 
impact on health [42–45]. While the models are becoming increasingly 
valid in estimating dietary intake, they are still far away from imple
mentation in nutrition research. However, further developments could 
lead to higher validity of these AI methods over conventional methods 
such as food records or food frequency questionnaires, which would 
have great implications for nutrition research. Apart from the increased 
validity, the lower burden on participants could facilitate dietary 
assessment in more studies, over more days and in more participants.

AI can be used to directly alter eating behaviour as well. Possibly, 
intervention studies in future will make use of AI platforms to change 
dietary intake and physical activity of the participants. Although AI 
chatbots and virtual coaches cannot fully replace human interaction, 
they can serve as cost-effective alternative to professional guidance 
[54]. AI-driven platforms can already provide general dietary advice 
and promote healthier lifestyles [55,56], albeit currently with limita
tions in personalisation for specific health conditions. Within the next 
few years, AI-driven coaching tools are expected to mature into per
sonalised, sensor-integrated “digital-twin” systems that can dynamically 
nudge diet and activity, but real-world impact will hinge on richer 
shared datasets, transparent and bias-checked algorithms, unified data 
standards, clear regulatory pathways, and clinical validation [57].

AI also offers solutions for research logistics, particularly in handling 
large volumes of data and literature, facilitating the systematic review 
process [11,48]. Additionally, AI can assist in summarising findings and 
identifying research gaps, but the effectiveness of these tools depends on 

the quality of input data and still require manually checking the accu
racy of its outputs. AI's ability to find patterns in big datasets offers great 
potential for nutrition and ageing research, where it is very likely that AI 
will be able to identify novel compounds that relate to slower ageing or 
prevention of age-related diseases and phenotypes.

4.1. Challenges and limitations

Despite promising advancements, several challenges hinder the 
widespread adoption of AI in nutrition and ageing research. Data quality 
and availability are significant concerns [58]. Many AI models require 
large datasets for training, which may not always be accessible or 
standardised across studies. Ethical considerations, such as data privacy 
and the potential for algorithmic bias, must also be addressed. For 
instance, AI models trained on data from specific populations may not be 
generalisable to others, potentially exacerbating health disparities [59]. 
In real-world healthcare settings, these issues can limit the effectiveness 
of AI-driven interventions, particularly in diverse populations. To 
maximize the benefits of AI, multidisciplinary collaboration is essential. 
Nutritionists, gerontologists, data scientists, and ethicists must work 
together to develop AI tools that are accurate, ethical, transparent and 
clinically relevant [60]. Such collaboration can help overcome adoption 
barriers ensuring AI applications are both practical and scalable in 
clinical practice. Standardising methodologies and creating robust 
frameworks for data sharing can enhance the quality and applicability of 
AI models.

Future research should focus on improving data quality and model 
transparency. Developing explainable AI models can help in under
standing the underlying mechanisms of ageing and the impact of 
nutritional interventions. Additionally, integrating AI with other 
emerging technologies, such as wearable devices and electronic health 
records, can provide a more holistic approach to monitoring and pro
moting healthy ageing.

Potential limitations specific to this mini-review include the choice 
of data sources, limited to PubMed and SCOPUS, which may not capture 
all relevant literature and could introduce database-specific biases. The 
paper inclusion and exclusion criteria, while clearly defined, follow a 
pragmatic approach characteristic of narrative mini-reviews and thus 
may lack the saturation of systematic reviews. Additionally, the AI- 
assisted methodology used here might face challenges going forward, 
as emerging AI models increasingly rely on training data that includes 
AI-generated content, potentially leading to “model collapse”, a degra
dation in model performance due to feedback loops of synthetic data 
[61]. These factors should be considered when interpreting the findings 
and highlight the need for ongoing methodological refinement in AI- 
assisted literature synthesis.

In conclusion, AI holds substantial potential to revolutionise nutri
tion and ageing research. By facilitating early diagnosis, personalising 
interventions, and streamlining research processes, AI can contribute 
significantly to promoting healthy ageing. However, realising this po
tential requires progress on ethical issues, data quality, and interdisci
plinary collaboration. Yet, even with human oversight and final 
accountability remaining a critical requirement, addressing these chal
lenges will pave the way for AI to become an integral part of strategies 
aimed at enhancing the health and well-being of the ageing population.
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dietary patterns for healthy aging, Nat. Med. 31 (5) (2025) 1644–1652.
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