Maturitas 200 (2025) 108662

FI. SEVIER

journal homepage: www.elsevier.com/locate/maturitas

Contents lists available at ScienceDirect

Maturitas

Review article

Check for

Artificial intelligence in nutrition and ageing research — A primer on iz

the benefits™

Pol Grootswagers ", Tijl Grootswagers "

@ Wageningen University, Division of Human Nutrition and Health, 6708 PB Wageningen, the Netherlands
Y The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
€ School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, NSW, Australia

ARTICLE INFO

Keywords:

Artificial intelligence
Nutrition

Ageing research

Machine learning

Deep learning

Dietary assessment

Health outcomes prediction
Malnutrition diagnosis
Eating behaviour analysis

ABSTRACT

Artificial intelligence (AI) is increasingly impacting multiple domains. The application of Al in nutrition and
ageing research has significant potential to transform healthcare outcomes for the ageing population. This review
provides critical insights into how Al techniques—such as machine learning, natural language processing, and
deep learning—are used in the context of care for older people to predict health outcomes, identify risk factors,
and enhance dietary assessments. Trained on large datasets, AI models have demonstrated high accuracy in
diagnosing malnutrition, predicting bone mineral density abnormalities, and forecasting risks of chronic dis-
eases, thereby addressing significant gaps in early detection and intervention strategies.

In addition, we review novel applications of Al in automating dietary intake assessments through image
recognition and analysing eating behaviours; these offer innovative tools for personalised nutrition interventions.
The review also discusses and showcases the integration of Al in research logistics, such as Al-assisted literature
screening and data synthesis, which can accelerate scientific discovery in this domain.

Despite these promising advancements, there are critical challenges hindering the widespread adoption of Al,
including issues around data quality, ethical considerations, and the interpretability of Al models. By addressing
these barriers, the review underscores the necessity for interdisciplinary collaboration to best harness Al's
potential.

Our goal is for this review to serve as a guide for researchers and practitioners aiming to understand and
leverage Al technologies in nutrition and healthy ageing. By bridging the gap between AlI's promise and its
practical applications, this review directs future innovations that could positively affect the health and well-being
of the ageing population.

1. Introduction

importance of keeping older adults fit and productive for as long as
possible, with diet playing a central role in promoting healthy ageing

The advancements in artificial intelligence (AI) in the last decade
have delivered new potential solutions for problems across many do-
mains, including healthcare and biomedical research. As life expectancy
keeps on rising, while birthrates slowly decline [1], the proportion of
older individuals is increasing. According to the World Health Organi-
zation, by 2050, the world's population aged 60 years and older is ex-
pected to account for 22 % (2 billion) of the total population, up from 12
% (900 million) in 2015 [2]. This demographic shift underscores the

[3].

Research efforts are intensifying to uncover how lifestyle in-
terventions, especially dietary modifications, can delay the ageing pro-
cess and the onset of age-related diseases [4] such as cardiovascular
disease, diabetes, and neurodegenerative disorders. However,
improving targeted nutritional strategies depends highly on our under-
standing of the mechanistical pathways underlying the hallmarks of
ageing [5]. Additionally, high-throughput techniques are needed to
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efficiently screen nutritional compounds for their role into ageing. Such
identification studies are being carried out, but need to be upscaled to
completely understand the vast array of potential compounds and their
interactions [6].

Machine-learning approaches—including deep learning, natural-
language processing, and large language models—are now being
applied to large-scale data in nutrition and ageing research [7]. Machine
learning algorithms, including supervised and unsupervised methods,
are being trained on enormous amounts of nutritional and biomedical
data to predict health outcomes, identify risk factors, and classify dietary
patterns. Deep learning on unstructured data such as images is used for
dietary intake assessment through image recognition of food items [8].
Large language models enhance natural language processing capabilities
in screening and summarising scientific literature [9], enabling re-
searchers to stay on top of the rapidly expanding body of knowledge.

Despite the potential, the application of Al in nutrition and ageing
research is not without challenges. On one hand, promising Al appli-
cations like Al-assisted abstract screening have yet to find their way into
widespread use among researchers and practitioners. These tools can
significantly reduce the time and effort required in systematic reviews
and meta-analyses by automating the screening process of large
numbers of abstracts and articles. On the other hand, there is a tendency
for AI companies to overpromise and underdeliver, leading to over-
reliance and misunderstandings. Issues such as data quality, lack of
standardised methodologies, ethical concerns, and interpretability of Al
models pose significant barriers to the adoption of Al in this field [10].

Therefore, it is necessary to critically assess where exactly the pos-
sibilities lie for Al within nutrition and ageing research. This review
provides an overview of the potential applications of Al in this field,
examining both the opportunities and limitations. We emphasise that
this work is a narrative review, designed to highlight specific applica-
tions and challenges rather than provide exhaustive coverage of all
research in the field. We aim to guide researchers in understanding and
harnessing the potential of Al to advance nutrition and ageing research.
By showcasing the practical implications of Al on research and practice
in nutrition and healthy ageing, we help differentiate media hype from
real impact.

2. Methods

For this review, we employed several Al tools in the process. The
sequence in which these tools were used is depicted in Fig. 1. We wrote
an outline for the subjects of the review. For every subject, a search
string was constructed with help from ChatGPT ol-preview. This string
was entered into SCOPUS, and the amount of hits were fed back into

Construct search
g query for each RQ
with ChatGPT

{

Define research
questions (RQ)
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ChatGPT ol-preview until a reasonable amount of hits was found (be-
tween 50 and 500 papers). The prompts leading to the final strings, and
the number of total and relevant, are presented in Supplementary
materials 1. These hits were exported in .ris format and imported into
ASReview for title and abstract screening. The suggested ASReview
protocol was followed [11]. Screening stopped when 10 papers in a row
were irrelevant. The relevant papers were again exported as .ris, im-
ported in EndNote, and supplemented with their full text PDFs. These
PDFs were imported into NotebookLM, a language model that only uses
information in presented PDFs, where summaries of the research papers
were created, which were restructured to academic text using ChatGPT
ol-preview and Claude Sonnet 3.5. The Al-generated summaries were
manually reviewed and edited by the authors to ensure fidelity to the
original sources and to prevent omission or misrepresentation of
information.

3. Results
3.1. Body composition

Al can play a big role in predicting body composition from limited
information. A chest radiographic prediction model showed to be able to
predict actual height and weight and can be combined with information
regarding clinical nutrition factors for rapid assessment of risk for
malnutrition [12]. Recent advancements in machine learning have led
to the development of effective predictive models for diagnosing
malnutrition in elderly patients. In a highly accurate model, key pre-
dictors like Activities of Daily Living (ADL), Albumin (ALB), Body Mass
Index (BMI), and age were identified [13]. Another study developed the
MUST-Plus tool, a machine-learning based screening tool, in a large
urban health system, significantly improving the early diagnosis and
documentation of malnutrition, with high acceptance among registered
dietitians [14]. MUST-Plus is based on demographics, anthropometrics
and laboratory data and demonstrated superior performance with
significantly higher sensitivity and specificity compared to the classic
MUST score [15]. A third study reanalysed data from a multicentre
cohort, utilizing models such as light gradient boosting machine and
random forest, and identified BMI, weight loss, and calf circumference
as the strongest predictors of malnutrition according to the GLIM
criteria, with the top models achieving diagnostic values that indicate
clinical applicability.

Moreover, recent studies have demonstrated the efficacy of machine
learning and deep learning models in predicting bone mineral density
(BMD) abnormalities and diagnosing osteoporosis. By using neural
networks and nomograms to analyse data from the National Health and
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Fig. 1. Visual representation of the workflow used in this mini-review. Graph constructed with Whimsical GPT plugin. The colours represent the main tool used in
that step (ChatGPT+Scopus green, ASReview orange, EndNote purple, NotebookLM grey, Claude 3.5 + ChatGPT yellow). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Nutrition Examination Survey (NHANES), surprising key risk factors
such as caffeine intake, carbohydrate consumption, BMI, height, and
various blood electrolytes were identified [16]. Their model demon-
strated clinical utility in predicting BMD abnormalities, especially with
dietary and electrolyte variations. Another study used deep learning
models on opportunistic CT scans to classify osteoporosis and predict
bone density, achieving high accuracy and strong correlations with
quantitative CT results, indicating potential for reducing radiation
exposure and expanding osteoporosis screening [17]. Machine learning
algorithms, applied to NHANES data to identify individuals with low
bone density using demographic and blood biochemical data, showed
that a logistic regression model outperformed other models and effec-
tively classified low BMD, supporting clinical decision-making for
osteoporosis prevention and management [18].

For sarcopenia risk prediction, studies have demonstrated the
effectiveness of machine learning models using non-invasive methods.
In the Korea National Health and Nutrition Examination Survey, a sar-
copenia prediction model using physical characteristics and activity-
related variables was developed [19]. The study found that their algo-
rithm achieved the highest accuracy, with BMI, weight, and waist
circumference being the most important predictors, suggesting this
model's utility in early detection of sarcopenia in resource-limited set-
tings [19]. A different study explored an innovative approach using
oculomics to predict sarcopenia. By analysing ophthalmological and
demographic data with their model, the study achieved good diagnostic
values, indicating that eye examinations can effectively predict sarco-
penia risk, facilitating early intervention and personalised treatment
plans [20].

3.2. Disease risk

Machine learning is more and more implemented in predicting dis-
ease risks, for example for several cancers [21,22], age-related macular
degeneration [23], atrial fibrillation [24], gout [25,26], delirium [27],
hyponatremia [28], cognitive impairment [29], atherosclerosis [30] and
diabetes [31]. Interestingly, these mainly machine-learning based pre-
diction models found several nutritional targets, including dietary fibre
for gout [25], dietary inflammatory index for cognitive impairment
[29], and triglycerides for type 2 diabetes [31]. The field of AI disease
prediction will advance further, leading to the identification and
confirmation of several nutritional factors that could be targeted to
improve healthy ageing.

Apart from disease outcomes, Al models are increasingly being used
to predict functional declines such as kidney function, bone mass loss,
muscle strength, and fall risks. Researchers have developed a machine
learning model to predict “kidney age” using computed tomography
(CT) scans and clinical data, identifying individuals at risk for kidney
function decline, even when creatinine levels are normal [32]. Machine
learning models also show promise for predicting osteoporotic fractures
[26,33]. Studies have used algorithms like gradient boosting, random
forest, decision tree, and logistic regression to predict fracture risk in
women, achieving higher accuracy than traditional methods like the
FRAX score [33]. In predicting muscle loss, Al models have demon-
strated 80-90 % accuracy in identifying sarcopenia by using data on
physical activity, obesity, socioeconomic status, and quality of life
[34,35]. Additionally, a study used machine learning to predict fall risks
in older adults by combining electronic health records with compre-
hensive geriatric assessments, illustrating AI's potential in anticipating
fall risks using diverse data sources [36]. Collectively, these advance-
ments indicate that the growing role of Al in predicting disease risks and
functional declines could significantly improve preventive healthcare
and promote healthier ageing.

3.3. Al for dietary intake assessment

Al-based dietary assessment systems are being developed to improve
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the accuracy of food intake tracking for better management of nutrition
and health, including applications in ageing populations [37-39]. These
systems use deep learning models to analyse images and videos of meals,
enabling the identification of food types, segmentation of food items,
and estimation of food volume [38-40]. For instance, systems like
goFOODTM can work with dual-camera smartphones or images from
different angles to reconstruct the 3D food volume and estimate calorie
and macronutrient content by referencing nutritional databases. The
technology has shown promising results, with goFOODTM demon-
strating superior performance compared to experienced dietitians in
analysing normal central-European meals [39]. While challenges remain
in accurately estimating portion sizes, particularly in real-world settings
with diverse food types and preparations, researchers are exploring
innovative solutions, such as leveraging depth information from 3D-
cameras to enhance portion size estimation accuracy [41]. Currently,
Al models are validated using suboptimal reference methods rather than
gold standards. To improve accuracy and reliability, it is recommended
to compare Al-based assessments with more rigorous techniques, such as
the doubly-labelled water method. In addition to image-based nutrient
detection, research has explored the potential of Al to automatically
analyse eating behaviour in videos, going beyond the basic recognition
of food types and quantities. This includes efforts to automatically detect
and count individual bites, chews, and other eating gestures. For
example, using deep-learning algorithms to analyse a set of face markers
extracted from videos to identify and count bites [42,43]. These algo-
rithms can track the movement of the mouth, such as the distance be-
tween the upper and lower lips, to determine when a bite is taken. Other
approaches involve models trained on inertial sensor data from wear-
able devices to detect wrist micro-movements characteristic of eating
behaviour [44,45]. Deep learning methods, which can detect more so-
phisticated patterns in large datasets, may be better suited for tasks like
chewing detection compared to conventional video-based tracking, as
chewing often involves more subtle mouth movements compared to the
distinct opening and closing of the mouth during biting [42].

In sum, recent developments in Al-based analysis of eating behaviour
have the potential to significantly benefit dietary assessment and
intervention strategies, but more robust comparisons against gold-
standard methods are essential to ensure accuracy and reliability.

3.4. Al for research logistics

Al is already being regularly used in ageing research, mainly in Al
driven drug discovery. Al-based drug discovery platforms can analyse
large chemical libraries and prioritise molecules that are most likely to
have anti-ageing properties [46]. This reduces the reliance on expensive
and time-consuming high-throughput screening methods [46]. Where
these techniques currently still mainly focus on pharmacological dis-
coveries, they can be adapted to address nutrient and food compound
discovery. Aside from discovering new compounds, Al is also used to
better understand ageing processes and identifying intervention targets
to mitigate the ageing process [47]. Al's ability to discover subtle pat-
terns in enormous data will enable a step change in the discovery of food
compounds that influence ageing.

Additionally, AI can be used to better summarize documented find-
ings. For example, the program ASReview leverages machine learning to
highlight relevant articles for researcher screening, potentially reducing
the time and effort required for literature reviews [11,48]. Beyond
identifying relevant publications, Al can also analyse large volumes of
text to extract key knowledge and identify research gaps by analysing
patterns and relationships [49], ultimately aiding in the synthesis of
information for review papers [46,50]. However, it is important to
remember that these tools still require researchers to provide accurate
input during the initial “training” phase to ensure the Al model learns to
identify relevant material effectively [48], and apply extreme caution
with interpretations as correctness of Al output is never guaranteed.
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4. Discussion

The integration of artificial intelligence (AI) into nutrition and
ageing research has opened new avenues for understanding and pro-
moting healthy ageing. This mini-review highlights the multifaceted
applications of AlI, ranging from predicting body composition to
enhancing dietary assessment and research logistics. While the potential
is immense, it is crucial to critically evaluate these developments to
ensure they translate into practical benefits for both researchers and the
ageing population.

One of the most promising areas is the use of Al in predicting body
composition and related health risks. Machine learning models have
demonstrated high accuracy in diagnosing malnutrition, osteoporosis
and sarcopenia among older patients. Interestingly, these models often
relied on easily accessible data, such as BMI and waist-circumference
[20], which is essential for practical implementation in settings where
advanced resources are unavailable, and even open up avenues for
implementation at home. In settings where CT scans are available,
models can be run that already show to outperform conventional ap-
proaches in sarcopenia diagnosis [51]. Earlier risk recognition of such
ageing phenotypes is pivotal for proper intervention delivery to mitigate
risks, for instance via nutrition and exercise regimens [52,53].

Beyond body composition, Al models are increasingly being used to
predict risks of chronic diseases such as cancer, diabetes, and cardio-
vascular conditions [21-31]. These models often identify nutritional
factors as significant predictors, highlighting the intertwined relation-
ship between diet and disease. For example, dietary fibre was found to
be a key factor in predicting gout [25], and the dietary inflammatory
index was significant in predicting cognitive impairment [29]. Such
findings underscore the importance of nutrition in prevention and
management of age-related diseases, and open the doors for targeted, or
even personalised, lifestyle interventions.

Al's role in dietary assessment is another area of significant
advancement. Image-based dietary assessment systems using deep
learning can accurately identify food items and estimate portion sizes,
improving the accuracy of dietary intake data [37-41]. While challenges
remain in accurately estimating portion sizes in real-world settings, the
continuous improvement of these technologies holds promise for both
clinical and research applications. Moreover, the development of Al
algorithms to analyse eating behaviour, such as bite and chew detection
from videos, offers novel methods to study eating patterns and their
impact on health [42-45]. While the models are becoming increasingly
valid in estimating dietary intake, they are still far away from imple-
mentation in nutrition research. However, further developments could
lead to higher validity of these AI methods over conventional methods
such as food records or food frequency questionnaires, which would
have great implications for nutrition research. Apart from the increased
validity, the lower burden on participants could facilitate dietary
assessment in more studies, over more days and in more participants.

Al can be used to directly alter eating behaviour as well. Possibly,
intervention studies in future will make use of Al platforms to change
dietary intake and physical activity of the participants. Although AI
chatbots and virtual coaches cannot fully replace human interaction,
they can serve as cost-effective alternative to professional guidance
[54]. Al-driven platforms can already provide general dietary advice
and promote healthier lifestyles [55,56], albeit currently with limita-
tions in personalisation for specific health conditions. Within the next
few years, Al-driven coaching tools are expected to mature into per-
sonalised, sensor-integrated “digital-twin” systems that can dynamically
nudge diet and activity, but real-world impact will hinge on richer
shared datasets, transparent and bias-checked algorithms, unified data
standards, clear regulatory pathways, and clinical validation [57].

Al also offers solutions for research logistics, particularly in handling
large volumes of data and literature, facilitating the systematic review
process [11,48]. Additionally, Al can assist in summarising findings and
identifying research gaps, but the effectiveness of these tools depends on
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the quality of input data and still require manually checking the accu-
racy of its outputs. Al's ability to find patterns in big datasets offers great
potential for nutrition and ageing research, where it is very likely that Al
will be able to identify novel compounds that relate to slower ageing or
prevention of age-related diseases and phenotypes.

4.1. Challenges and limitations

Despite promising advancements, several challenges hinder the
widespread adoption of Al in nutrition and ageing research. Data quality
and availability are significant concerns [58]. Many Al models require
large datasets for training, which may not always be accessible or
standardised across studies. Ethical considerations, such as data privacy
and the potential for algorithmic bias, must also be addressed. For
instance, Al models trained on data from specific populations may not be
generalisable to others, potentially exacerbating health disparities [59].
In real-world healthcare settings, these issues can limit the effectiveness
of Al-driven interventions, particularly in diverse populations. To
maximize the benefits of AL, multidisciplinary collaboration is essential.
Nutritionists, gerontologists, data scientists, and ethicists must work
together to develop Al tools that are accurate, ethical, transparent and
clinically relevant [60]. Such collaboration can help overcome adoption
barriers ensuring Al applications are both practical and scalable in
clinical practice. Standardising methodologies and creating robust
frameworks for data sharing can enhance the quality and applicability of
Al models.

Future research should focus on improving data quality and model
transparency. Developing explainable AI models can help in under-
standing the underlying mechanisms of ageing and the impact of
nutritional interventions. Additionally, integrating AI with other
emerging technologies, such as wearable devices and electronic health
records, can provide a more holistic approach to monitoring and pro-
moting healthy ageing.

Potential limitations specific to this mini-review include the choice
of data sources, limited to PubMed and SCOPUS, which may not capture
all relevant literature and could introduce database-specific biases. The
paper inclusion and exclusion criteria, while clearly defined, follow a
pragmatic approach characteristic of narrative mini-reviews and thus
may lack the saturation of systematic reviews. Additionally, the Al-
assisted methodology used here might face challenges going forward,
as emerging Al models increasingly rely on training data that includes
Al-generated content, potentially leading to “model collapse”, a degra-
dation in model performance due to feedback loops of synthetic data
[61]. These factors should be considered when interpreting the findings
and highlight the need for ongoing methodological refinement in Al-
assisted literature synthesis.

In conclusion, Al holds substantial potential to revolutionise nutri-
tion and ageing research. By facilitating early diagnosis, personalising
interventions, and streamlining research processes, Al can contribute
significantly to promoting healthy ageing. However, realising this po-
tential requires progress on ethical issues, data quality, and interdisci-
plinary collaboration. Yet, even with human oversight and final
accountability remaining a critical requirement, addressing these chal-
lenges will pave the way for Al to become an integral part of strategies
aimed at enhancing the health and well-being of the ageing population.
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